11 research outputs found

    Learning Model Structure from Data : an Application to On-Line Handwriting

    Get PDF
    We present a learning strategy for Hidden Markov Models that may be used to cluster handwriting sequences or to learn a character model by identifying its main writing styles. Our approach aims at learning both the structure and parameters of a Hidden Markov Model (HMM) from the data. A byproduct of this learning strategy is the ability to cluster signals and identify allograph. We provide experimental results on artificial data that demonstrate the possibility to learn from data HMM parameters and topology. For a given topology, our approach outperforms in some cases that we identify standard Maximum Likelihood learning scheme. We also apply our unsupervised learning scheme on on-line handwritten signals for allograph clustering as well as for learning HMM models for handwritten digit recognition

    TRX: A Formally Verified Parser Interpreter

    Full text link
    Parsing is an important problem in computer science and yet surprisingly little attention has been devoted to its formal verification. In this paper, we present TRX: a parser interpreter formally developed in the proof assistant Coq, capable of producing formally correct parsers. We are using parsing expression grammars (PEGs), a formalism essentially representing recursive descent parsing, which we consider an attractive alternative to context-free grammars (CFGs). From this formalization we can extract a parser for an arbitrary PEG grammar with the warranty of total correctness, i.e., the resulting parser is terminating and correct with respect to its grammar and the semantics of PEGs; both properties formally proven in Coq.Comment: 26 pages, LMC

    Partitionnement de tracés manuscrits en ligne par modèles Markoviens

    No full text
    National audienc

    Apprentissage de modèles Markoviens pour l'analyse de séquences

    No full text
    Initialement, l'apprentissage supervisé a permis d'apprendre des modèles à partir de données étiquetées. Mais, pour de nombreuses tâches, notamment dans le cadre de la modélisation utilisateur, si la quantité de données disponible est potentiellement sans limite, la quantité de données étiquetées est quasi-nulle. Dans le cadre de cette thèse, nous nous intéressons à l'apprentissage non-supervisé de modèles de séquences. L'information de séquence constitue le premier niveau de données structurées, où les données ne sont plus de simples vecteurs de caractéristiques. Nous proposons des approches d'apprentissage non-supervisé de séquences que nous appliquons à l'apprentissage automatique de modèles de Markov cachés (MMC) et modèles de Markov cachés hiérarchiques (MMCH) notamment. Notre but est d'apprendre simultanément la structure et les paramètres de modèles markoviens, pour minimiser la quantité d'information a priori nécessaire.Initially, Machine Learning allowed to learn models from labeled data. But, for numerous tasks, notably for the task of user modeling, if the available quantity of data is potentially without limit, the quantity of labeled data is almost nonexistent. Within the framework of this thesis, we are interested in the unsupervised learning of sequence models. The information of sequence constitutes the first level of structured data, where the data are no more simple vectors of characteristics. We propose approaches that we apply to the automatic learning of Hidden Markov Models ( HMMs) and Hierarchical HMMs (HHMMs). Our purpose is to learn simultaneously the structure and the parameters of these Markovian Models, to minimize the quantity of prior information necessary to learn them.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Mathématiques rech (751052111) / SudocSudocFranceF

    Learning HMM Structure for On-line Handwriting Modelization

    No full text
    International audienceWe present a hidden Markov model-based approach to model on-line handwriting sequences. This problem is addressed in term of learning both hidden Markov models (HMM) structure and parameters from data. We iteratively simplify an initial HMM that consists in a mixture of as many left-right HMM as training sequences. There are two main applications of our approach: allograph identification and classification. We provide experimental results on these two different tasks

    Learning Model Structure from Data : an Application to On-Line Handwriting

    No full text
    We present a learning strategy for Hidden Markov Models that may be used to cluster handwriting sequences or to learn a character model by identifying its main writing styles. Our approach aims at learning both the structure and parameters of a Hidden Markov Model (HMM) from the data. A byproduct of this learning strategy is the ability to cluster signals and identify allograph. We provide experimental results on artificial data that demonstrate the possibility to learn from data HMM parameters and topology. For a given topology, our approach outperforms in some cases that we identify standard Maximum Likelihood learning scheme. We also apply our unsupervised learning scheme on on-line handwritten signals for allograph clustering as well as for learning HMM models for handwritten digit recognition

    Un modèle probabiliste de detection en ligne de nouvelevenement

    No full text
    National audienc

    A model-based approach to sequence clustering

    No full text
    International audienc

    Opa: up and running

    No full text
    corecore